

Lees: Reverse Racking, Rheology and Recovery

Simon Nordestgaard The Australian Wine Research Institute

- Background the problem with wine movements
- Reverse racking a different approach to lees removal
- Rheology the science of material (e.g. lees) flow
- Recovery new(ish) technologies for lees processing

Wine movements

Problems with wine movements

- Labour (setup, pushes, tank cleaning)
- Water use / wastewater production
- Tank availability

- Interested in practices and technologies that
- •allow wine to remain in the same tank, while still achieving the same processing outcome

Normal racking

Rheology basics (*rheo*: to flow)

Rheology basics – yield stress

Rheology – lees samples

Dry suspended solids (DSS): 70 °C, 24 hours (corrected for soluble solids using 0.2µm filtered control)

Notes:

The Australian Wine Research Institute

Lees type	Yield stress (Pa)	App. viscosity @ 500s ⁻¹ (mPa.s)	VSS (v/v)	DSS (w/w)
Gross red	28	130	47%	16%
White ferment	<0.5	14	51%	15%
White juice	<0.5	6	27%	7%
White juice with bentonite	<0.5	5	31%	10%
Port with bentonite	3	13	60%	4%

Notes:

- Samples corresponding at bottom of tank, except gross red
- Have only analysed one white ferment lees sample so far, getting more samples
- Rheological analysis at 20°C
- Volume suspended solids (VSS): 3,000 x g, 5 minutes
- Dry suspended solids (DSS): 70 °C, 24 hours (corrected for soluble solids using 0.2µm filtered control)

Lees type	Yield stress (Pa)		App. viscosity @ 500s ⁻¹ (mPa.s)	
	20°C	4°C	20°C	4°C
Gross red	28	38	130	190
White juice	<0.5	<0.5	6	9

The Australian Wine Research Institute

Height (m)	VSS (v/v)	DSS (w/w)	App. viscosity @ 500s ⁻¹ (mPa.s)	d _{0.5} (µm)
10	n.m.	0%	1.9	n.m.
2.2	<2%	0%	2	11
1.7	<2%	0%	2.3	11
1.2	9%	0.3%	2.9	11
0.9	18%	3%	4.3	12
0.5	23%	5%	4.6	14
0	27%	7%	5.8	18

Notes:

Rheological analysis at 20°C

Volume suspended solids (VSS): 3,000 x g, 5 minutes

Dry suspended solids (DSS): 70 °C, 24 hours (corrected for soluble solids using 0.2µm filtered control)

Particles size by laser diffraction (Malvern Mastersizer 2000)

Oak chip effects on rheology

- Oak chips provide structure to the lees and prevent it from flowing (high yield stress)
- Alternatives: 'oak-bomb' tanks, commercial liquid oak/tannins (regulatory issues?)

Recovery – RDVs (prevailing practice)

- RDVs have been the lees processing workhorse at wineries for many years
- Reasons that alternatives are being considered:
 - Quality downgrades for higher value products resulting from oxidation and dilution with water
 - Product can still be relatively turbid
 - High labour requirements
 - Filter aid (perlite or DE) needs to be purchased and spent material dealt with
 - Operator safety? Perlite seems to mainly be used instead of DE so appears to be much less inhalation risk than when working with DE (perlite contains <0.1% crystalline silica)

Pall Oenoflow HS

- Similar to standard cross-flow
- PVDF symmetric membrane
- Wide bore hollow fibres (~3mm?)
- Upwards rather than downwards flow (maybe helps prevent settling, clogging)
- Versatile most types of lees & wine
- Rotary sieve to remove seeds, petioles, etc

Filter skid (cut-away of a filter module inset)

Schematic (including rotary sieve)

1. Adaptation of normal Flavy FX wine X-flow to use on settled must lees (largest volume of lees)

- Must lees or wine (no fining agents allowed in either)
- PES asymmetric membrane
- Wide bore hollow fibres (3mm instead of 1.5mm)
- Rotary sieve to remove seeds, petioles, etc
- Head cleaning system to prevent blockages

Rotary sieve + filter + head-cleaning + wide bore

2. Leestar

- TiO₂ membrane on sintered SS support
- Very wide bore (18mm)
- Versatile most types of lees (too slow for wine?)
- Requires cooling a lot of heating? (low filtrate per recirculation)

Unit with flow schematic and internal config.

Della Toffola Omnia CFKF

The Australian Wine Research Institute

- Ceramic membrane on titanium support
- Wide bores in filter monoliths (3.5 6mm)
- Versatile most types of lees and wine
- Rotary brush strainer to remove seeds, petioles, etc
- Head cleaning system with brushes and aspirator

Filter unit (including rotary brush strainer on the right)

Filter monoliths in housing

Head cleaning system

TMCI Padovan Dynamos

- Cross-flow cleaning action on membrane generated by rotating filter as opposed to recirculation flow
- Ceramic membrane
- Versatile most lees types (too slow for wine?)

The Australian Wine Research Institute

Ceramic rotary

filter discs

- Separation principally by centrifugal force as opposed to by screening
 - Depends on a solid-liquid density difference
 - More effective at removing larger rather than smaller particles
- Lower cake moisture content and potentially higher throughput than lees cross-flow filters
- Turbid product relative to lees cross-flow filtration additional filtration required
 - Is a pretreatment rather than a final clarification step
- One-pass as opposed to recirculating operation

$$v = \frac{d^2(\rho_s - \rho_l)r\omega^2}{18\mu}$$

- Difficult to know which of the alternatives is best without controlled comparative trials on a range of different lees over a long period
- Lees filters described provide much clearer product than RDVs
- Equipment generally features increased level of automation over RDVs
- Lower wine recovery than RDV with some of the devices discussed, but lower turbidity and higher quality
- Very short payback periods (<2 years) are claimed by several suppliers but payback period may be quite winery dependent, e.g.:
 - Labour use for RDVs at the winery? (is 1 person operating 1 or 5 RDVs)
 - Level of downgrade from RDV use at the winery? (e.g. \$20/L → \$1/L vs. \$1/L → \$1/L)
 - Perlite disposal arrangements

Thank you – any questions?

Acknowledgements

 Australian grape growers and winemakers and the Australian government for funding through the GWRDC

- Wineries who have given us access to data and allowed us to collect samples
- Equipment manufacturers who have supplied information on their equipment